If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2=488
We move all terms to the left:
7n^2-(488)=0
a = 7; b = 0; c = -488;
Δ = b2-4ac
Δ = 02-4·7·(-488)
Δ = 13664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13664}=\sqrt{16*854}=\sqrt{16}*\sqrt{854}=4\sqrt{854}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{854}}{2*7}=\frac{0-4\sqrt{854}}{14} =-\frac{4\sqrt{854}}{14} =-\frac{2\sqrt{854}}{7} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{854}}{2*7}=\frac{0+4\sqrt{854}}{14} =\frac{4\sqrt{854}}{14} =\frac{2\sqrt{854}}{7} $
| x^2+x^2+4x+x=0 | | 2×=1-7x | | Y=0.25x+45= | | 1296/x^2=0 | | X=7y=49 | | 2x(x+1)=7(x) | | +4-2y=-28 | | n^2–7n=0 | | n2–7n=0 | | F(-8)=-6x+4 | | 4c+35=8c-55 | | .4c+35=8c-55 | | .8x4-5x2=0 | | 16x+16x+8x=180 | | m∠B=16.5°;127.7 | | 3^-x=3^(6x-9) | | 12^-3y=2 | | 14x—8x=18; | | 14-7x=21 | | 9+-24n=-32n | | 3x+567=x | | –5y–8=17 | | –5v–8=17 | | y(-10)=90 | | (2x-15)+35=3x-5 | | 5x2-13=0 | | 9x=15(6) | | (2x)+51=101 | | y+32=40 | | X^2=x+9 | | (4x-54)=90 | | 2x²=850 |